How graphene slides: measurement and theory of strain-dependent frictional forces between graphene and SiO2.

نویسندگان

  • Alexander L Kitt
  • Zenan Qi
  • Sebastian Rémi
  • Harold S Park
  • Anna K Swan
  • Bennett B Goldberg
چکیده

Strain, bending rigidity, and adhesion are interwoven in determining how graphene responds when pulled across a substrate. Using Raman spectroscopy of circular, graphene-sealed microchambers under variable external pressure, we demonstrate that graphene is not firmly anchored to the substrate when pulled. Instead, as the suspended graphene is pushed into the chamber under pressure, the supported graphene outside the microchamber is stretched and slides, pulling in an annulus. Analyzing Raman G band line scans with a continuum model extended to include sliding, we extract the pressure dependent sliding friction between the SiO2 substrate and mono-, bi-, and trilayer graphene. The sliding friction for trilayer graphene is directly proportional to the applied load, but the friction for monolayer and bilayer graphene is inversely proportional to the strain in the graphene, which is in violation of Amontons' law. We attribute this behavior to the high surface conformation enabled by the low bending rigidity and strong adhesion of few layer graphene.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contact-dependent mechanical properties of graphene nanoribbons: an ab initio study.

The mechanical properties of graphene nanoribbons on Ni(111) surfaces with different contact sizes are investigated by means of density functional theory. For finite contact sizes, the stress behavior of graphene nanoribbons on metal electrodes is likely to be similar to that of suspended graphene, however the critical strain is not reached due to the sliding friction at the interface. The comp...

متن کامل

Characterization of Elastic Properties of Porous Graphene Using an Ab Initio Study

Importance of covalent bonded two-dimensional monolayer nanostructures and also hydrocarbons is undeniably responsible for creation of new fascinating materials like polyphenylene polymer, a hydrocarbon super honeycomb network, so-called porous graphene. The mechanical properties of porous graphene such as its Young’s modulus, Poisson’s ratio and the bulk modulus as the determinative properties...

متن کامل

Substrate effect on thickness- dependent friction on graphene

Using friction force microscopy, we have investigated the frictional behavior of graphene deposited on various substrates as well as over micro-fabricated wells. Both graphene on SiO2/ Si substrates and graphene freely suspended over the wells showed a trend of increasing frictionwith decreasing number of atomic layers of graphene. However, this trend with thickness was absent for graphene depo...

متن کامل

Stress Concentration Factor of Single-Layered Graphene Sheets Containing Elliptical Vacancies

In the present study, potential of finite element based molecular structural mechanics (MSM) for evaluating stress concentration factor of single-layered graphene sheets (SLGSs) with elliptical vacancies is successfully addressed. The MSM approach mimics the interatomic forces of the nanostructure by defining an equivalent frame structure containing beam elements. To obtain the mechanical and c...

متن کامل

Graphene–ZnO@SiO2 hybrid: An efficient and solid acid catalyst for synthesis of azlactones under ultrasound irradiation

The central theme of this article is how to explore a novel route to fabricate graphene– ZnO@SiO2 hybrid by a covalent process. The synthesis procedure consists of three-steps: (1) synthesis of ZnO nanoparticles, (2) ZnO nanoparticles modification by tetraethyl orthosilicate and (3-aminopropyl) triethoxysilane after introduction of amino groups on its surface, (3) the covalent attach...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 13 6  شماره 

صفحات  -

تاریخ انتشار 2013